# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved.
請確定已安裝 torch
和 torchvision
。如果未安裝 pytorch3d
,請使用下方的單元格進行安裝
import os
import sys
import torch
need_pytorch3d=False
try:
import pytorch3d
except ModuleNotFoundError:
need_pytorch3d=True
if need_pytorch3d:
if torch.__version__.startswith("2.2.") and sys.platform.startswith("linux"):
# We try to install PyTorch3D via a released wheel.
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
else:
# We try to install PyTorch3D from source.
!pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
import os
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
# Util function for loading point clouds|
import numpy as np
# Data structures and functions for rendering
from pytorch3d.structures import Pointclouds
from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene
from pytorch3d.renderer import (
look_at_view_transform,
FoVOrthographicCameras,
PointsRasterizationSettings,
PointsRenderer,
PulsarPointsRenderer,
PointsRasterizer,
AlphaCompositor,
NormWeightedCompositor
)
如果你使用 Google Colab 執行本筆記本,請執行下列單元格,取得點雲資料並儲存在路徑 data/PittsburghBridge
中:如果你在本地執行,則資料已存在正確的路徑中。
!mkdir -p data/PittsburghBridge
!wget -P data/PittsburghBridge https://dl.fbaipublicfiles.com/pytorch3d/data/PittsburghBridge/pointcloud.npz
# Setup
if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
# Set paths
DATA_DIR = "./data"
obj_filename = os.path.join(DATA_DIR, "PittsburghBridge/pointcloud.npz")
# Load point cloud
pointcloud = np.load(obj_filename)
verts = torch.Tensor(pointcloud['verts']).to(device)
rgb = torch.Tensor(pointcloud['rgb']).to(device)
point_cloud = Pointclouds(points=[verts], features=[rgb])
PyTorch3D 中的渲染器由 光柵化器 及 著色器 組成,而每個渲染器各有許多子組件,例如 相機(正交/透視)。在此,我們會初始化其中一些組件,並對其餘部分使用預設值。
在此範例中,我們會先建立一個 渲染器,該渲染器使用 正交相機 以及套用 alpha 合成。接著我們會了解如何透過模組化 API 調整不同的組件。
[1] SynSin:從單一影像進行端到端的檢視合成。 Olivia Wiles、Georgia Gkioxari、Richard Szeliski、Justin Johnson。CVPR 2020。
# Initialize a camera.
R, T = look_at_view_transform(20, 10, 0)
cameras = FoVOrthographicCameras(device=device, R=R, T=T, znear=0.01)
# Define the settings for rasterization and shading. Here we set the output image to be of size
# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1
# and blur_radius=0.0. Refer to raster_points.py for explanations of these parameters.
raster_settings = PointsRasterizationSettings(
image_size=512,
radius = 0.003,
points_per_pixel = 10
)
# Create a points renderer by compositing points using an alpha compositor (nearer points
# are weighted more heavily). See [1] for an explanation.
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
renderer = PointsRenderer(
rasterizer=rasterizer,
compositor=AlphaCompositor()
)
images = renderer(point_cloud)
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off");
現在,我們將修改 渲染器,使用 alpha 合成 與設定的背景顏色。
renderer = PointsRenderer(
rasterizer=rasterizer,
# Pass in background_color to the alpha compositor, setting the background color
# to the 3 item tuple, representing rgb on a scale of 0 -> 1, in this case blue
compositor=AlphaCompositor(background_color=(0, 0, 1))
)
images = renderer(point_cloud)
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off");
在此範例中,我們會先建立一個 渲染器,該渲染器使用 正交相機 以及套用 加權合成。
# Initialize a camera.
R, T = look_at_view_transform(20, 10, 0)
cameras = FoVOrthographicCameras(device=device, R=R, T=T, znear=0.01)
# Define the settings for rasterization and shading. Here we set the output image to be of size
# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1
# and blur_radius=0.0. Refer to rasterize_points.py for explanations of these parameters.
raster_settings = PointsRasterizationSettings(
image_size=512,
radius = 0.003,
points_per_pixel = 10
)
# Create a points renderer by compositing points using an weighted compositor (3D points are
# weighted according to their distance to a pixel and accumulated using a weighted sum)
renderer = PointsRenderer(
rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
compositor=NormWeightedCompositor()
)
images = renderer(point_cloud)
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off");
現在,我們將修改 渲染器,使用 加權合成 與設定的背景顏色。
renderer = PointsRenderer(
rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
# Pass in background_color to the norm weighted compositor, setting the background color
# to the 3 item tuple, representing rgb on a scale of 0 -> 1, in this case red
compositor=NormWeightedCompositor(background_color=(1,0,0))
)
images = renderer(point_cloud)
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off");
切換到 pulsar 後端很簡單!pulsar 後端有一個內建的合成器,因此在建立時不需要 compositor
參數(即使你提供該參數,系統仍會顯示警告)。它會在渲染裝置上預先配置記憶體,因此在建立時需要 n_channels
。
渲染器轉送函式的所有參數都是逐批的,背景顏色(在本例為 gamma
)除外,而且你必須提供與批次中的範例數量相同的值。背景顏色是可選的,預設為全零。你可以在論文 使用基於球形的表示進行神經渲染的快速可微分射線投射 中找到有關 gamma 如何影響渲染函式的詳細說明。
你也可以將 native
後端用於 pulsar 後端,它已經提供存取點不透明性。native 後端可以從 pytorch3d.renderer.points.pulsar
匯入;你可以在 docs/examples
資料夾中找到相關範例。
renderer = PulsarPointsRenderer(
rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
n_channels=4
).to(device)
images = renderer(point_cloud, gamma=(1e-4,),
bg_col=torch.tensor([0.0, 1.0, 0.0, 1.0], dtype=torch.float32, device=device))
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off");
在這裡,我們使用 pyTorch3D 函數 plot_scene
在 Plotly 圖形中呈現點雲。plot_scene
會傳回由輸入定義的軌跡和子繪製項的 Plotly 圖形。
plot_scene({
"Pointcloud": {
"person": point_cloud
}
})
現在,我們將呈現一批點雲。第一個點雲和上面一樣,而第二個點雲全黑,且在所有維度中偏移 2,讓它們能呈現於同一張圖表上。
point_cloud_batch = Pointclouds(points=[verts, verts + 2], features=[rgb, torch.zeros_like(rgb)])
# render both in the same plot in different traces
fig = plot_scene({
"Pointcloud": {
"person": point_cloud_batch[0],
"person2": point_cloud_batch[1]
}
})
fig.show()
# render both in the same plot in one trace
fig = plot_scene({
"Pointcloud": {
"2 people": point_cloud_batch
}
})
fig.show()
對於批次,我們也能使用 plot_batch_individually
來避免自行建構場景字典。
# render both in 1 row in different subplots
fig2 = plot_batch_individually(point_cloud_batch, ncols=2)
fig2.show()
# modify the plotly figure height and width
fig2.update_layout(height=500, width=500)
fig2.show()
我們也能修改這兩個函數的軸數引數和軸數背景,並將標題放置於 plot_batch_individually
中。
fig3 = plot_batch_individually(
point_cloud_batch,
xaxis={"backgroundcolor":"rgb(200, 200, 230)"},
yaxis={"backgroundcolor":"rgb(230, 200, 200)"},
zaxis={"backgroundcolor":"rgb(200, 230, 200)"},
subplot_titles=["Pointcloud1", "Pointcloud2"], # this should have a title for each subplot, titles can be ""
axis_args=AxisArgs(showgrid=True))
fig3.show()