異質批
支援對各種尺寸的 3D 輸入(例如網格)進行批處理
快速 3D 運算子
對 3D 資料的幾個常見函數支援最佳化實作
可微分渲染
具備適用於 PyTorch、C++ 和 CUDA 的平行實作的模組化可微分渲染 API
from pytorch3d.utils import ico_sphere
from pytorch3d.io import load_obj
from pytorch3d.structures import Meshes
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.loss import chamfer_distance
# Use an ico_sphere mesh and load a mesh from an .obj e.g. model.obj
sphere_mesh = ico_sphere(level=3)
verts, faces, _ = load_obj("model.obj")
test_mesh = Meshes(verts=[verts], faces=[faces.verts_idx])
# Differentiably sample 5k points from the surface of each mesh and then compute the loss.
sample_sphere = sample_points_from_meshes(sphere_mesh, 5000)
sample_test = sample_points_from_meshes(test_mesh, 5000)
loss_chamfer, _ = chamfer_distance(sample_sphere, sample_test)